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NOTE

On the Calculation of the Gravitational Force
of Axi-symmetric Infinitely Thin Disks

1. INTRODUCTION

We describe an efficient method for the numerical calcula-
tion of the gravitational force of axi-symmetric infinitely thin
disks. The evolution of a self-gravitating astrophysical disk
is affected by the force acting in the plane of the disk.
Because of the long evolution times, the calculation of the
dynamics of such a disk requires high numerical accuracy
of the intermediate computations. Numerical codes which
correctly satisty the conservation of mass and angular momen-
tum are used (see, e.g., Norman ef al. [1]). The gravitational
force enters the dynamical equations via the source terms
and must be calculated with sufficient precision. We present
a computational scheme which meets the requirements of
numerical accuracy, computational efficiency, and vectoriza-
tion, The most crucial point is the regularization of the
singularity of the integral kernel. The separate treatment of
the singular point commonly used is avoided. Qur numerical
scheme is based on piecewise approximations of the surface
density by parabolas. The time consuming computation of
the elliptical integrals is omitted by a matrix representation
of the integral operator. The problem of the singularities of
the integrands is removed by a particular representation of
the approximation parabolas. Since astrophysical disks are
often not isolated, but surrounded by exterior masses, some
exterior surface density distributions are included.

2. THE INTEGRAL REPRESENTATION OF THE
GRAVITATIONAL FORCE

For an axi-symmetric disk, the angular integrations can be
performed so that the potential and the force can be represented
by single integrals over the radial coordinate. The integrands
can be written in terms of the elliprical integrals K and E. Let
o (s} be the surface density and ¢(s) the gravitational potential
in the plane of the disk, where s is the distance from the axis
of symmetry. We denote the polar coordinates of the source
point by (r, ¢). Then '

dy
T4 2= 2 srcos @)

Bs) = —Gf: a(r)rdrf;”(s %)
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Performing the angular integration one obtains

#(s) = —4G j "o (K s)dr, o)
where the kernel X is given by
K(r,5)= 'K (f> for r < s,
5 \S
(3)
K(r,s)=K (i) for r > s.
Differentiating the potential one obtains
9 4() = 4G f “ o (r)H(s, r) d (@)
s ols) = , T(H(s. 7) dr.
where the kernel H is
rE(#/s5)
== <
H(s, r) =) forr < s, (5
, .
H(s, r}= 1 ZLSI?- + K(s/r)} fors << r. (6)
s (s — )

The Potsson integral (2) has only a logarithmic singularity, the
force integral (4) a pole in addition. However, for numerical
and physical reasons, we calculate the force integral. In the
case of numerical simulations of dynamical problems with a
large number of grid points and repeated calculations of the
gravitational force, the time consuming computation of the
elliptical integrals must be avoided. This requirement is fulfitled
by a scheme based on a matrix representation of the integral
operator (see below).

The surface density o(r) must be continuous on 0 =
r << oo, We assume that o is given on 0 = r = R with either
g(ry — 0 for r — R so that o(r) = 0 for r = R, or with
o(R) = w{R}, where u(r) is a given exterior surface density:

p(r) = U(R)—;; forr=Rin=0—1,-3,~5. (T)
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Evaluating the integrals (20) and 21 fori =1, ., kK — 1,
we get
s? 2
Wi = “3*{(1 — xb)K(xy ) — (1 + 17 )E(.)
(31
= (1 = x)K(x) + (1 + xDHE()},
and fori =k, .., N — 1 we get
2
Wi = (=10 = YK i) = (1 + 33 0By
(32)

+ (1 = yHK(y) — (1 + yDE(y)y7L

Now let us briefly discoss the calculation of the elements
V.i. Integrations by parts can be performed to obtain integrals
which are of a more elementary form. However, then severe
numerical cancellation can occur. Therefore we calculate the
original integrals (18) and (19). An adaptive Romberg integra-
tion tackles the problem of the (weak) divergence of the deriva-
tives of the term (1 — y}K(y).

Now we present the contributions of ‘the exterior surface
density. For all field points s, with & = . N — 1 this
contribution is given by Eq. (24). We put z = x, = 5/R. The
expansions for z — 0 should be used if z < 107,

Forn =0, —1, =3, =5 we get
UN.k:MZ_)_‘)_EZ(I+3Z1) forz— 10, (33)
Z 4 8
UN.k:M—)_EZ<l+iZZ) forz—»0, (34)
z 8 16
Unp=1{—2 — 29K(z)
+ 2B} — =2 1+§z) forz— 0, (35)
16 4
- s 4 s 2
Uppe=19"12 +§(32. + 41 —z9 | K(z)
4 (5
+§(z'+4)E(z) z
T 27
— 2—4¢(1 32z) forz— 0. (36)

At sy = R the contribution of the exterior surface density is
given by the element Uyy which is obtained from Eqgs. (25)
and (30).

Forn = 0, —1, =3, —5 we have

Upy=0,7/2 —1,1,7/9. (37)
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6. DISCUSSION

The elements of the matrices U/, V, W can be precalculated
with sufficient numerical accuracy, We find that numerical
cancellations are insignificant. Also the cancellation of positive
and negative force contributions plays no role. The code has
been tested by use of surface density distributions with known
analytical solutions of the Poisson integral. We have calculated
the force of disks with finite radii and of infinitely extended
disks with an asymptotic behavior given by the expression
(8). (Ten relevant disks with analytically known result have
been used.) Both equidistant grids and grids with a geometrical
progression of the intervals have been adapted. Surface
densities with peak-like behavior at the origin have been
used as well as oscillating surface densities. The tests have
shown that an accuracy up to 107% can be achieved. The
accuracy of the gravitational force is determined only by the
accuracy of the approximation of the surface density by
the parabolas.

There are also astrophysical questions which imply the gravi-
tational potential instead of, or in addition to, the force. For
instance, the equilibrium equation of a rotating barotropic disk
can be integrated and written in terms of potentials. In such
cases the potential can be calculated readily from the force by
use of weighted parabolas (Schmitz [8]).

The presented method for the calculation of the force (4)
can be applied also to the potential (2). Since the scheme (13)
and the transformation (17) are unchanged, compuiational time
is saved only at the preceding computation of the matrix ele-
ments. For this reason and because of the problems caused by
numerical differentiation we prefer the direct calculation of the
force integral.

A simple example for the method described in this note is
the computation of the force of an infinitely thin sheet the
structure of which depends only on £, one of the two Cartesian
coordinates which define the plane of the sheet

« a(&)

Py ¢(§) g I

T de (38)

Apart from a factor (27G)~' this is the Hilbert transform of the
surface density . We assume that

o(£V=0 for—o <& =0L=f < (39)

Let{&,i= 1, N, & =0, & = L} be a set of space points, and
let o; the numerical values of the surface density. Then the
matrix elements are given by

&— &
fk - §+|
Uere = %Inifk - fk—lL

fori#=k— 1,i5k, (40)

Uy=— é"[“['fi - ‘fkﬂlv (41)
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V= %’(f! = &),
Wi = %(Z‘fk - §i+1 - gi)(giﬂ - §:)

(42)
(43)

The representation of the surface density o(£) = &(1 — §) for
0 = £ = 1 by parabolas is exact. Comparing the exact result
dP(ENIE = 2G{E — v+ && — 1) In((§ — 1)/€)} with the
nomerical result we find that for N = 100 to 300 grid points
and a machine accuracy 107'%, a relative accuracy ¢ = 107"
to 107" can be achieved. The largest value £ =~ 1077 at ¢ ~
0.5 is due to the cancellation of opposite contributions. This
example shows that cancellation errors are completely insig-
nificant as compared to approximation errors.

Clearly, the code is written for a vector machine. Tt consists
of vector instructions with vectors of length N. With respect
to the CPU-time, the main parts of the code are the transforma-
tion (11) and the algebraic operations (13). The operations are
equivalent to 10N elementary vector instructions for vectors of
length N. The calculation of the coefficients of the parabolas
needs only 30 elementary vector operations. Calculations have
been performed on a two pipeline CDC Cyber 205 (University
of Karisruhe}, A cray Y-MP EL (University of Wiirzburg), and
a Cary Y-MP 8/864 (Forschungszentrum Jilich). We find that
the measured CPU-times correspond to the predicted times
(tact-frequency multiplied by the number of operations). For
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N = 500, the CPU-time for the calculation of the force at all
points amounts to less than 10 ms for both the Cyber 205 and
the Y-MP 8/864 and 30 ms for the Y-MP EL..
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